Definition of Binom. Meaning of Binom. Synonyms of Binom

Here you will find one or more explanations in English for the word Binom. Also in the bottom left of the page several parts of wikipedia pages related to the word Binom and, of course, Binom synonyms and on the right images related to the word Binom.

Definition of Binom

No result for Binom. Showing similar results...

Binomial
Binomial Bi*no"mi*al, n. [L. bis twice + nomen name: cf. F. binome, LL. binomius (or fr. bi- + Gr. ? distribution ?). Cf. Monomial.] (Alg.) An expression consisting of two terms connected by the sign plus (+) or minus (-); as, a + b, or 7 - 3.
Binomial
Binomial Bi*no"mi*al, a. 1. Consisting of two terms; pertaining to binomials; as, a binomial root. 2. (Nat. Hist.) Having two names; -- used of the system by which every animal and plant receives two names, the one indicating the genus, the other the species, to which it belongs. Binomial theorem (Alg.), the theorem which expresses the law of formation of any power of a binomial.
Binomial theorem
Binomial Bi*no"mi*al, a. 1. Consisting of two terms; pertaining to binomials; as, a binomial root. 2. (Nat. Hist.) Having two names; -- used of the system by which every animal and plant receives two names, the one indicating the genus, the other the species, to which it belongs. Binomial theorem (Alg.), the theorem which expresses the law of formation of any power of a binomial.
Binominal
Binominal Bi*nom"i*nal, a. [See Binomial.] Of or pertaining to two names; binomial.
Binominous
Binominous Bi*nom"i*nous, a. Binominal. [Obs.]
Haemoglobinometer
Haemoglobinometer H[ae]m`o*glo`bin*om"e*ter, n. [H[ae]moglobin + -meter.] Same as Hemochromometer.
Hemoglobinometer
Hemoglobinometer Hem`o*glo"bin*om"e*ter, n. (Physiol. Chem.) Same as H[ae]mochromometer.

Meaning of Binom from wikipedia

- ( n − 1 ) × ⋯ × ( n − k + 1 ) k × ( k − 1 ) × ⋯ × 1 , {\displaystyle {\binom {n}{k}}={\frac {n\times (n-1)\times \cdots \times (n-k+1)}{k\times (k-1)\times...
- n k ) = n ( n − 1 ) ⋯ ( n − k + 1 ) k ( k − 1 ) ⋯ 1 , {\displaystyle {\binom {n}{k}}={\frac {n(n-1)\dotsb (n-k+1)}{k(k-1)\dotsb 1}},} which can be written...
- s_{4B}(k)={\binom {2k}{k}}\sum _{j=0}^{k}4^{k-2j}{\binom {k}{2j}}{\binom {2j}{j}}^{2}={\binom {2k}{k}}\sum _{j=0}^{k}{\binom {k}{j}}{\binom {2k-2j}{k-j}}{\binom {2j}{j}}=1...
- p^{-r}=(1-q)^{-r}=\sum _{k=0}^{\infty }{\binom {-r}{{\phantom {-}}k}}(-q)^{k}=\sum _{k=0}^{\infty }{\binom {k+r-1}{k}}q^{k}} hence the terms of the probability...
- f(k,n,p)=\Pr(X=k)={\binom {n}{k}}p^{k}(1-p)^{n-k}} for k = 0, 1, 2, ..., n, where ( n k ) = n ! k ! ( n − k ) ! {\displaystyle {\binom {n}{k}}={\frac {n...
- n + 1 r + 1 ) . {\displaystyle {\binom {r}{r}}+{\binom {r+1}{r}}+{\binom {r+2}{r}}+\cdots +{\binom {n}{r}}={\binom {n+1}{r+1}}.} The name stems from...
- ( n k ) + ( n k − 1 ) = ( n + 1 k ) , {\displaystyle {\binom {n}{k}}+{\binom {n}{k-1}}={\binom {n+1}{k}},} by Pascal's identity. On the other hand, if...
- {\displaystyle {\binom {b_{1}}{b_{2}}}=x_{1}{\binom {a_{11}}{a_{21}}}+x_{2}{\binom {a_{12}}{a_{22}}}} and ( a 12 a 22 ) . {\displaystyle {\binom {a_{12}}{a_{22}}}...
- {\displaystyle {\frac {{\binom {a+c}{a}}{\binom {b+d}{b}}(a+b)!(c+d)!}{n!}}={\frac {{\binom {a+c}{a}}{\binom {b+d}{b}}}{\binom {n}{a+b}}}} Another derivation:...
- The Gaussian binomial coefficient, written as ( n k ) q {\displaystyle {\binom {n}{k}}_{q}} or [ n k ] q {\displaystyle {\begin{bmatrix}n\\k\end{bmatrix}}_{q}}...